ccTSA: A Coverage-Centric Threaded Sequence Assembler

نویسنده

  • Jung Ho Ahn
چکیده

De novo sequencing, a process to find the whole genome or the regions of a species without references, requires much higher computational power compared to mapped sequencing with references. The advent and continuous evolution of next-generation sequencing technologies further stress the demands of high-throughput processing of myriads of short DNA fragments. Recently announced sequence assemblers, such as Velvet, SOAPdenovo, and ABySS, all exploit parallelism to meet these computational demands since contemporary computer systems primarily rely on scaling the number of computing cores to improve performance. However, most of them are not tailored to exploit the full potential of these systems, leading to suboptimal performance. In this paper, we present ccTSA, a parallel sequence assembler that utilizes coverage to prune k-mers, find preferred edges, and resolve conflicts in preferred edges between k-mers. We minimize computation dependencies between threads to effectively parallelize k-mer processing. We also judiciously allocate and reuse memory space in order to lower memory usage and further improve sequencing speed. The results of ccTSA are compelling such that it runs several times faster than other assemblers while providing comparable quality values such as N50.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

SPAdes: A New Genome Assembly Algorithm and Its Applications to Single-Cell Sequencing

The lion's share of bacteria in various environments cannot be cloned in the laboratory and thus cannot be sequenced using existing technologies. A major goal of single-cell genomics is to complement gene-centric metagenomic data with whole-genome assemblies of uncultivated organisms. Assembly of single-cell data is challenging because of highly non-uniform read coverage as well as elevated lev...

متن کامل

Original Articles SPAdes: A New Genome Assembly Algorithm and Its Applications to Single-Cell Sequencing

The lion’s share of bacteria in various environments cannot be cloned in the laboratory and thus cannot be sequenced using existing technologies. A major goal of single-cell genomics is to complement gene-centric metagenomic data with whole-genome assemblies of uncultivated organisms. Assembly of single-cell data is challenging because of highly non-uniform read coverage as well as elevated lev...

متن کامل

De novo meta-assembly of ultra-deep sequencing data

UNLABELLED We introduce a new divide and conquer approach to deal with the problem of de novo genome assembly in the presence of ultra-deep sequencing data (i.e. coverage of 1000x or higher). Our proposed meta-assembler Slicembler partitions the input data into optimal-sized 'slices' and uses a standard assembly tool (e.g. Velvet, SPAdes, IDBA_UD and Ray) to assemble each slice individually. Sl...

متن کامل

A Scalable and Accurate Targeted Gene Assembly Tool (SAT-Assembler) for Next-Generation Sequencing Data

Gene assembly, which recovers gene segments from short reads, is an important step in functional analysis of next-generation sequencing data. Lacking quality reference genomes, de novo assembly is commonly used for RNA-Seq data of non-model organisms and metagenomic data. However, heterogeneous sequence coverage caused by heterogeneous expression or species abundance, similarity between isoform...

متن کامل

Optimistic Recovery in Multi-threaded Distributed Systems

The problem of recovering distributed systems from crash failures has been widely studied in the context of traditional non-threaded processes. However, extending those solutions to the multi-threaded scenario presents new problems. We identify and address these problems for optimistic logging protocols. There are two natural extension to optimistic logging protocols in the multi-threaded scena...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2012